
CLES
SHR

Book No. {o2

Copy No. aa

Amendment No. (3

© The Copyright in this document is the property of Eliott
Flight Automation Lirnited, The document is supplied by
Eliott Flight Automation Limited on the express terms that
it is to be trested 23 confidential and that it may rot be cesied
used or disclosed to others for ény purpose except es euth-
orised in writing by this Company.

AIRBORNE COMPUTING DIVISION

ELLIOTT FLIGHT AUTOMATION LIMITED

PREFACE,

“Fils. doonks cdesesbeas tee. 4a Dhecertag bepes te
N)

I-pass sin, 94/3/41, Binewy Mode 3
2- PASS SIR, “aft ip, Binns Moda 3
J PASS SIR Options (Myled
Q-fASS SIR Opbens (Myler)

“Thee enable macliuas - code voqrnees ponlken bee Suunhiohte a Pe 4
Gor > mA on ax a) sO AGS,

Fraviens, txpe. paadur Mele 3,

of 4 2 is) COVH gee Ge

“Gt ohrse, PASE GIR cach 2ePASE SIR both experts “ve
FOO Seren Teheesee awl YO Celeerela.

"Tle ert doe? wok Unehucle.

tages wknd ogeraks. an OV coke oly.

Tre bape taoder modes and “Telecodes hefered by alroue ancl
wha lus chek ee eo Ac B. Binoy be foreland
AC.D. Tatemsk corte wefered be le this book one del ed ta

Beosk lob *403/105/420 USEFUL NOTES’,

“The vecaden whe ‘Yu untencliae abtte 903, ToS, ow Yae
males cre ond SIR prograrinds. “4 bs Ket eked bs
bend Boek 13, "4n% SIR PROSEAMMER’S Guibe'
Geels joy ¢ 403} 490 SIR Cau Koby)

and

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Ww

10:

Prudace, & Coukion Page
INTRODUCTION “
TL Generals. 2. ck ce ce ee we ee ee ne ee ee ees - il

1.2 Glossary of terms re |
1.3.. Elements of SIR Programe ce ee ce ee te ee ee ee 4
1.4 'New line! sequence... .. ce. pe te ee te te te te ee 4
1.5 Six bit internal code 1. 0. ce ee te te ee eee » 5

WORDS 2. oe ce ce ce ce ce ct ee ee et pe te te te te ee 6

BLOCKS 1. cc ce ce ce ce ce ee we ee ce te ee ee ce ee oF

IDENTIFIERS

4.1 Global and Sub-Global Identifiers .. 1... 42 ea ee 8

4.1.1 Global Identifiers 1. 6. 6. ee ce te oe 8

4.1.2 Sub- Global Identifiers 0.6 ee eee 9

4.1.3 Example 6. 20 ce ee ee ce te ee ee re ee FY
4.2 Local Identifiers.. 6. ce ce ee ce ce ee ee tw ee 9
4.3 Labels and Declarations . ¥

4.4 Example 1. 0. ce ce ee ee ce ee ee te ee ee we ee 10

INSTRUCTIONS .

5.1 Absolute Addresses... 1... ee ee ee ee te ee ae 12
5.2 Relative Addresses .. 6.01. ce we ce ee ee te ee 12

5.3 Identified Addresses 6. 6. ce ce ce ee re ee ee 13
5.4 Iliteral Addresses 1, 6. 6. ce ee re te ee ee ee ee V4

5.4.1 Quasi-instruction (.. 00. 05 te ee ee be ee ES

CONSTANTS

6.1 Integer and Fractions:. .. 05.0. ec aot aro 16
6.2 Octal Groups 6. 6. we ce ee ee ee ee ee we ee) 16
6.3 Alphanurneric Groups... 0.08. 17
6.4 Pseudo-Instructions .. 0... se ce ce ee aes 18

SKIPS .

7.1 Labelled Skips 1... 6. ce ee ae we ee ee . 19

COMMENTS & TITLES 1.0. ue ce ce ee ae ae te as 20

END OF TAPE AND END OF PROGRAM SYMBOLS

9.1 End of tape symbol (halt code)... 6. 6. ce ae ee al
9.2 End of program symbol (%).. 2... 0. 00 eee 21

SPECIAL FACILITIES

10.1 Patch and Restore... 64 1. es ce ee ot oe te ee 22
LO.1,1 Patch 1... canes ce ce ee ee ee ee ee © 22

~10.1,2 Restore tee ee ee eee 22
23 10.2 The Tigger Taaliby be PASS SiR se ee oe ae

ro

Ghapte ro oli:

Chapter 12:

Chapter 13:

Chapter 14:

Chapter 15:

Chapter 16+

Chagher 44 A

OPTIONS FoR I-fASS Sik
11.1 Load-and-Go mode 1. 6. 6. ce ee ce te te ae
11.2 Non Load-and-Go mode
11.3 Check mode 2. ce ce ce ee cone ee
11.4 Uses of non load- and- go assembly. see
11.5 Summary and Examples of Options

fe ee oe wt we ne te ae

ASSEMBLY AND LOADING OF SIR TAPES with t-fAss

l2.1 Assembly of SIR Tapes 2. 6. ce ce ce ee ee oe

12.1.1 Load-and-Go Mode... 1. ce ce ee ee oe
12.1.2 Non Load-and-Go Mode 2.4.4...
12.1.3 Checking Mode i... oe setae ee ee ee

12.2 Loading of Relocatable Binary Tapes te ee ee

12.3 Mixing of RLB tapes and mnemionic tapes ..

12.4 Loading programs into the high end of the store

12.5 Compatability with eacior issuce o& i-pASS SiR
14.6 Mutiacle pregmn assembly

_ ERROR INDICATIONS,

13.1 Layout of Error Indications and Their

Effect on Assembly 1. 06 oe ee ee ee ee eee

13.2 Examples of Assembly Error Indications

13.3 Error Indications given during loading of

relocatable binary tapes... 6. ee ee ae se ee oe

EXAMPLE OF A SIR PROGRAM

V4.1 Notesse ce ce ce ce ce ee ce ee ce ee ee ee we

14,2 Layout a a a a ee ee

*

SUMMARY OF ENTRY POINTS of i PAss.91

SToRe useD RF Il-eass SIR.

si a
 2—PASS

P41. Genemi Deseripinen

V4.8. "tr wager Foctbity

V4.3. Ovtnons

14.4. Literals

hs. Assem ler & hoadaing , & he lelock Last

C46. Dume wa thee dieblonan. Eo as geval figs

yA. Surwciny ee Error lnclicabions

4.8. Summony of Exbay Sounds

i. a, Binary gas guncbed by a fase SR

Page

25

26
27
27

28

29

29
29

29
30

31

31

Bi

BIA

34
34

35

38

38

4]

i] he

43

44
AS a

re)

46
aq

“f

ee

H

PREFACE,

“Tee aches Assevhe he
hak en poadgr is fawtlioe

mechan corde.

segegy
Pa Casha oAsennksl oe ROS

w F990 comapulie GA ,.

Se.

Ctecine be oper Zal

eAnternds lea ont, og seunAS ,
ett. 403/408 [420

On atten FOR GOR
A *

eae BID = cared ghee, aosck eg
s & Ay As ~ op and pu wath enh wttnche e, a psd OS semloler atlas cated cent fac Uli fer

Bae oe 1GSe4 ~ aed sive. |

Both. assendsles can he operand
Theesdo ee F200 Tetecereds, .

Bott, ease tla Rorennbie wee weacler
Colibs wag, paele. A ws beep neadd,

(2.0.8.5 frges made by eer eks ‘ os

assembler

& preqraes fe)

“De de pose is
o

og

Fox lacgee Pogo s : ov

. Progr ws ot Seva Aeecthe,

Sed.

CRUTION,

\SSue e% Dofass sin
Seas Moca wiad ko MAKE

on. LORE - cored Shows |

tes arisen bo cuecK

nee taken oe

used — has Sane
ve bo ohyenank

Luriturg pre Gee

hen Sb a BS Rates

reereds,. B Voronphvennis,

rele: ak bo tnberme da Ky,

PASS Sta}

9 he developers
4000 er Sooy

dese Abeck wen iowerd 4,

ba pes

Souk rae’ Sp perv tuna by
ul

bee SEL. be gag .

ro
HY

“\

Chapter .1: INTRODUCTION

1.1 General

. The Symbolic Input Routine (SIR) enables programs

' to be written in a modified form of machine code which has two principal

advantages over machine code?

(i) It is not necessary to specify the absolute address
of a store location used-in a program. Locations

may instead be referred to by names invented

by the programmer and the SIR assembler will

allocate a specific store location for each such

invented name.

(33) It is possible to write instructions using
constants, without specifying where the constant

is stored. Instead the constant itself is written

in the address part of the instruction.

I-PASS Programs wtitten in SIR code can be assembled

by means of the/SIR assembler in two ways, load-and-go and non load-and- go.

(iii) Programs assembled in load-and-go mode are
loaded into the computer ready for triggering.

(iv) Programs assembled in non load-and-go mode,
however, are output in a relocatable binary code

so that they can be entered into the computer by

means of the SIR binary loader rtublag cAbede

IHFASS Sik, The reason for
having this alternative mode of assernbly is

P. ten * given in chapter 11. 3.
UTR ORME MA SIR cael com otto be assembled by Q-fASS SIR,

1.2 Glossary of terms. -

In the following glossary a brief explanation of each term

is given followed where necessary by a reference to a chapter where a full
definition or explanation is to be found.

ALPHANUMERIC CHARACTER any tape character which has a six bit internal

code representation (6. 3)

ALPHANUMERIC GROUP a group of three ALPHANUMERIC CHARACTERS -

a type of constant (6. 3)

ASSEMBLER the program which reads and translates programs written in

SIR code (12.1)

BLOCK the main division of a PROGRAM: It comprises a GLOBAL ID#NTIFIER

LIST followed by a CODE BODY (Chap. 3); and should be pretased by Q TUTOR

1

an

BLOCK RELATIVE ADDRESS (N;) the address of location N of the current.

- BLOCK, where N is an unsigned integer. (The first location of a

BLOCK is relative location zero) (5. 2. ii). (obsetes ”

CODE BODY all that part of a BLOCK other than the GLOBAL IDENTIFIER
LIST. It includes constants, instructions and work-space (Chap. 3).

COMMENT information inserted in a SIR program which may be meaningful

to human beings, but is ignored by the ASSEMBLER. Comments are

enclosed in round brackets () (Chap. 8). See Also “TETLE

CURRENT PLACING ADDRESS (CPA) the address where the next word will
be placed by SIR (10.1). also cattle store fourrcer (Se),

CURRENT PLACING ADDRESS RESERVE (CPAR) a location holding a

former placing address used in conjunction with the PATCH and RESTORE

facilities (10, 1).

DECLARATION the use of an IDENTIFIER as a LABEL (Chap. 4).

DICTIONARY the part of the computer store in which the ASSEMBLER keeps

alist of IDENTIFIERS, INCREMENTS and LITERALS together with references
to the locations to which they refer. Also the list itself.

DIRECTIVE a PATCH, RESTORE, SKIP or OP TION (qqv.). Directives tell

the ASSEMBLER how and where it is to store the translated program.

GLOBAL IDENTIFIER an IDENTIFIER having the same meaning in several

PROGRAMS (4. 2).

GLOBAL IDENTIFIER LIST the list of GLOBAL and SUB GLOBAL

IDENTIFIERS, valid in the BLOCK it heads, that is enclosed in square

brackets and occurs at the head of each BLOCK (4. 12}.

HALT CODE a character punched on a SIR mnemonic tape, at the beginning

of a newline, which causes the ASSEMBLER to wait, Ge be written

IDENTIFIED ADDRESS. an address consisting of an IDENTIFIER alone or

an IDENTIFIER followed by an INCREMENT (5. 3).

IDENTIFIER an invented name used as substitute for an address (4).

am

INCREMENT a signed integer following an IDENTIFIER to modify its meaning ($:25,

INTERMEDIATE “TAPE : $ae RELOSATAGLE GINARY TAPE

LABEL an IDENTIFIER preceding a word and referzing to the location

containing that word (4, 3).

LABEL LIST a list of LABELS together with their eddresses which can be

punched during ASSEMBLY (11. 2).

“LITERAL a constant appearing as the address part of an instruction (5, 4).

LOAD-AND-GO a mode of operation in which a SIR program is assembled into

the computer store for immediate use. cf. NON LOAD-AND-GO (11.1, 12.1).

LOADER a tape read in by the initial instructions, as poneled at
tee aint of S-PASS Sik tiny tapes.

LOCAL IDENTIFIER an IDENTIFIER which retains its meaning only inside

the block in which it is declared (4.1),

NON LOAD AND GO a mode of operation in which a SIR program is translated

toa RELOCATABLE BINARY TAPE (11.2, 12.1).

OP TION (48N) a DIRECTIVE to the ASSEMBLER which enables the programmer

- to vary the way in which the assembler operates (Chap. 11).

PATCH (&N) a DIRECTIVE used to correct or control the placing of a SIR

program. It instructs the assembler to store program in location N onwards

(10. 1):

PERCENT SIGN(%) the end of program symbol. On reading it the ASSEMBLER

locates constants and checks for undeclared identifiers and then waits (9. 2).

PROGRAM a sequence of BLOCKS terminated by a PERCENT SIGN.

PSEUDO INSTRUCTION an instruction not intended to be obeyed. It ig used as,

' for example, a constant. It is written in an identical form to other instructions

(6. 4).

QUASI-INSTRUCTION a literal address in the form of an instruction (5, 4. 1),

RELOCATABLE BINARY (RLB) TAPE a special tape holding a SIR program

which is output in NON LOAD AND GO assembly (12.1, 12.2).
Also callad an (NTEAMEDIATE, . bape.

ay

RESTORE ($) a DIRECTIVE which cancels. the effect of a PATCH or series
of PATCHES by restoring the placing address to its original value (10. 1).

tals
SEPARATOR a spacelor new line. It is used to separate different SIR

elements, Can be wetlen €) Oo &©.

SIX- BIT INTERNAL CODE the code in which the ASSEMBLER stores

characters three to a location. See code table in (1. 5),

Skip (> N) a DIRECTIVE, normally used to reserve work space, which

- instructs the assernbler to leave the next N store locations unaltered (7).

STore -§ Cain TER: Seo CORRECT PLACING AeEeers

SUB GLOBAL IDENTIFIER an IDENTIFIER having the same meaning in
several BLOCKS (4, 1)..

TITLE 2 COMMENT of Ue Shad ob bape ev BLOCK

enclosed, letem ao doulole beackal Cand a Single braekek

Goer tte. evrpese ee idan ying Owe Pragremrne ey block, (Chap. g)

1.3 Elements of SIR Programs

The following basic elements may occur in a SIR
program, and must be separated from each other by at least one separator.

Words - Labels

Patches, Restores, Global Identifier Lists

Skips . Stop Codes

Options Percent symbols

Comments A Trager, .

See references in 1, 2 for details of these elements.

1.4 'New line! sequence

The SIR assemblers +eocl one line of source text at
a time into a read buffer. Every new line should be followed by several

_ blanks to simplify future editing of the tape. (The omission of these

blanks is not an error), To this. end edit programs
ere auatlable to automatically insert blanks after eachnew __..
line.

Note thot ese blenks ene elsentiag ef
Sloprom characters ane not weds a

. On 955 cada keeeh, nowhere may wnvik of J
characters, Camage eth. 8 Lee Lead sie ignares glee
Gownte © gunde taal Vian Sead? es neon,

w
a

Ww

1.5 Six bit internal code.

6- bk coda : b-ik code
, Charuclee Chornckee

Dacwaed | Ocked | Celak

ce 00 | & Space 32 40 \ grave
1 i oF : KewUns 23 41 A
2 o2 ot 34 42 B
3 03 F g 25 43 c
4 04 § 36 44 Dd
5 05 %, 37 45 B
6 06 (kw 38 46 ¥
vi O7 i? ocuke, 39 at G

8 10 i ¢ 40 50 H
9 ‘ ti |) 44 51 t

iO | 12 * 42, 52 J
11 13 [+ 43 53 K
12 14 : : 44 54 L
13 15 ~ 45 55 M
14 16 ° 46 56 N
15 17 iy 47 57 o

16 20) 48 60 P
17 at 1 49 61 Q
18 22 2 50 62 R
19 23 3 54 63 8
20 24 4 52 64 7
21 25 5 83 65 u
22 26 6 54 66 v
23 27 7 55 67 W
24 20 g 56 70 x
25 : 31 9 57 7TH Y
26 42 : 58 72 7.
27 | 33 ; 59 73 T
aR ‘ 84 < 60 74 g
29 : 35 = 81 7S 1
30 : 36 > 62 16 D
at : a7 $3 17 <n

tal

Noles abr te G-biE cola.

may be puncted as “new hina ov
: ¢ . : «
Carriage rebum + Line Lead“. Sac poragrep ls 4%,

2. On input no distinction is made between upper case and lower case letters. Letters are

always output in upper case.

3. Ow 490 Ve lececto. be pes, Z, factate wad, ™ greisce, Tren

Ge peeing as $, +. awd + vais he. Raw BS tung

verbion bed cnecackene’, oak kaw "sq bod " Mang

. +o penctaeal ad wo

+, On FOR Sees Cordis. tapes, Sere uy foe. gun honch

. N os ear Gere ar @, £ wey be perched ag

£4 &, BZ, o¢ \. omck, lo Suton mog be penehad of 9 |

5. “Thee symbol © Prmviz otek bab, Prong ofes le

sec law Sie tenes + Cee ae breath OL & a

é. Ves 6 -bA SIR Tntemnl code bs shrnply
pelobedd ke “A.C.D. Dntenst Cocke, fre Joa”

dasembed elreorhere,

5A,

ne

Chapter 2: WORDS

we
er

Words are the basic elements of a SIR program. After
assembly each SIR word occupies one store location in the. computer.

Words can be written in two forms:-

i constants e. g. + i g 304

~. 2667

(43) instructions e.g. 15 2048
/2 CAT+10

* All words must be followed by a separator. Words are

entered.into consecutive store locations in the order that they appear

in the SIR program. The only time that the assembler does not obey this

rule is when it receives an order to the contrary in a directive (patch, ih

skip, ox option). °

'Chapter. 3: BLOCKS

: Every SIR program consists of one or more blocks. Each
block is divided into two parts:- ,

(i) A Global Identifier List which is enclosed by square
brackets [}. This part of the block may only contain

identifiers and separators.

(43) A Code Body which follows the Global Identifier List

of the same block, and which is terminated either by the

{ symbol at the start of the next block, or by the end of
program symbol (%).

The significance of these terms is explained in the next
chapter,

The last instruction capable of being obeyed in each block must

be an unconditional jump (e.g. the dynamic stop 8:+0 explained in 5. 2(i) below).

It will usually be followed by labelled constants and work space,

The effect of trickling out of the end of a block is undefined.

7 Example

[PRINT INT FRAC] Global Identifier List }
PRINT: >}
INT 5 FRAC

ose Code block 1
ote ee body
0 PRINT

/8 2
WSP >i

[INT]
ae eee —

N. B, The Global Identifier List may be omitted at the head of a one-block

program, but if it is omitted block relative addresses (see 5, 2(ii))
may not be used.

he we of bles before each bled (Chapter €) is shen
EL ter ondnd.

dy

Chapter 4: IDENTIFIERS , Ye

An identifier is a name invented by the programmer which

is a substitute for an address. Any combination of letters .A-2% and digits

0-9 is acceptable as an identifier, provided that the identifier starts with

a letter. ;

e.g.

A

HOUR

T52

. MULTIPLE

are acceptable identifiers

32BIT are starts with a digit

BL(BATH) not parentheses i
T 52 acceptable space
B- LINE because hyphen

<
2
"

Identifiers are distinguished from each other by their

first six characters. Thus no distinction is made between FLIGHT,

FLIGHTI, FPLIGHT2 and FLIGHTPATH.

Since no distinction is made between upper and lower

case letters the identifiers FLIGHT, flight, {LiGhT and Flight are

treated as identical. Programmers are strongly advised to use ugper

case exclusively when writing programs, excagt fer commenti.

Identifiers are declared by being used as labels.

Consequently every identifier must be used as a label once and only

once within its range of validity.

4.1 Global and Sub-Global Identifiers. }

4.1.1 Global Identifiers.

Global Identifiers are the links between
the different blocks of a program. They must be listed in the Global

Identifier Lists at the head of the block in which they are declared:and

at the heads of every other block in which they are to be valid. One or

more separators must follow each identifier in a Global Identifier List,

and only identifiers separators and the Sub-Global Identifier marker, " 5, ~s,

may occur between the square brackets which enclose the list.

When an identifier is included in the Global

Identifier Lists of two or more blocks which are assembled together it

refers to 4 single address indicated by a label in one of these blocks (the

block in which it is declared). An identifier which is used globally in some

blocks may be used as a local identifier in any block in which it is not listed

as global. °

~
~

4.1.2 Sub- Global Identifiers.

if on its first occurrence in a Global Identifier

List an identifier is immediately preceded by # ors it is treated asa Sub-Global

‘Identifier.
Sra coe

Whereas a Global Identifier remains in the SIR™

dictionary after the end of program symbol % has been encountered and

permits communication between several programs that are in store together,

Sub- Global Identifiers are removed from the SIR dictionary when % is

encountered.

The listing of an identifier as Global or Sub-
Global is determined by the first Global Identifier list in which it occurs

and is valid for a complete program. An identifier cannot be Global in seme

blocks of a program and Sub-Global in others.

4.1.3 Examples.

[MOUSE #HAMSTER "LION WOOLF]

MOUSE and WOOLF are Global Identifiers.

HAMSTER and LION are Sub- Global Identifiers.

4.2 Iocal Identifiers.

: Identifiers which are neither Global nor Sub-Global are

Local, Local identifiers have no meaning outside the block in which they are

declared.

The same name may represent a Global or Sub- Global

Identifier in some blocks and several different Local Identifiers in other blocks

and be undefined elsewhere (see 4. 5).

2s 4,3 Labels and Declarations.

Each Local Identifier is declared by being used once and

only once as a label in the block for which it is valid.

Similarly each Global or Sub-Global Identifier is declared

by being used once and only once as a label in exactly one of the blocks for

which it is valid.

Labels are followed by one or more separators, and

refer to the store location into which the word following the label is to be

assembled.

@. ge OUTPUT 15 6144
AREA ~ 23378

2K -PASS. HR Only Q-PASS SIR trents sub goteok
idevdifiers as “global,

A location may be labelled by several identifiers with

one or more separators between them. They need not be ali on one line.

e.g 8 REPEAT

BEGIN GO START

ENTRY

4 FLAG

Assume that the instruction 8 REPEAT is assembled

in location 2300. Then BEGIN, GO, START, ENTRY all refer to location

2301, If, however, 8 REPEAT was assembled in 2336, then BEGIN, GO,

START, ENTRY would refer to location 2337, into which the instruction

4 FLAG would be assembled. :

An absolute address may be labelled. Such a label

is written thus: CONTINUE=9... This would allow location 9 to be referred

to as CONTINUE.

4.4 Example (see Figure 2).

(i) Programs are named after the Global or Sub- Global
identifier that labels their first instruction,

(ii) Blocks are named after the Global or Sub- Global

identifier that labels their first instruction,

(iii) APPLE is Global in both programs.

(iv) PEAR is Sub-Global in program APPLE and another

PEAR is Sub-Global in program PLUM.

(v) APRICOT is Global in both programs and another

APRICOT is Local to block PEAR of APPLE.

(vi) ORANGIE is Local to block APPLE of APPLE.

(vii) PLUM is Sub-Global in program APPLE and another
PLUM is the name of the second program.

(viii) PRUNE and END are Local in block PEAR of PLUM.

(ix) A third program could refer to the Global Identifiers

APPLE, APRICOT and PLUM.

(x) | The example is a nonsense program.

~a
et

‘a
o

[APPLE “PEAR APRICOT]
APPLE 0 APRICOT

14 ays
ORANGE se 192

(7 PEAR
8 ORANGE

[PEAR APPLE "PLUM]
PEAR 10 APRICOT «

4 APRICOT
9 PLUM
8 APPLE

APRICOT +0
(PLUM APRICOT PEAR]
PLUM 8 PEAR
APRICOT >100

%

(PLUM APRICOT "PEAR]
PLUMs= 5095

-4{PLUM
0 APRICOT

10 17
8 PEAR

[PEAR APPLE]
. PEAR 10 PRUNE

4 PRUNE

\ 7 APPLE

END 8 END

PRUNE -5

%

at
,

block

APPLE

block

PEAR

block

PLUM

block

PLUM

block

PEAR

“

ye

program

APPLE

program

PLUM

11

Chapter . 5: INSTRUCTIONS

. . Words written in the form of instructions are introduced by

a /(B-line) or a digit. Each word comprises two parts, a function and an

address, separated by one or more separators.

The functions consists of a decimal integer between 0 and

15 representing corresponding functions and a / symbol immediately

preceding the integer if B-modification is desired.

The Address part of an instruction can be written in four

different ways; Absolute, Relative, Identified or Literal. It is assembled

as an integer in the range 0-8191 and is interpreted at run-time as relative

to the start of the store module in which the instruction is placed.

References to locations in other store modules are made

by means of B-lined instructions.

5.1 Absolute Addresses.

An absolute address is an unsigned integer not greater

than 8191, and it refers to the computer store location with that integer as

jts address. In functions 14 and 15, however, the absolute address gives

further specification of the function by the usual conventions.)

Examples

4 8180 load the accumulator with the

contents of location 8180

15 6144 punch (the least significant 8 bits of)
the contents of the accumulator

5.2 Relative Addresses.

(The relative addresses must not be outside the range

0-8191). Relative Addresses are of two kinds:-

(i) Location Relative Address consisting of a semicolon
followed by a signed integer. This address refers

to a location, the address of which, is the sum of the

address of the location in which the current instruction

is being assembled, plus the signed integer.

e.g. 7 3+3 means “jump three locations forward if zero"

5 ;~l means "store in the previous location"

8 340 means a dynamic stop.

Note that 8 ;0 is not a permissible instruction.

Sa
at

a
e

(ii) Block Relative Addresses consisting of an unsigned
integer not greater than 8191 followed by a semicolon.

This address refers to a location with address equal

to the sum of the unsigned integer and the address of the

first location of the current block.

e.g. [MASS]
: 4336

4 MASS

5 30K

If +336 is assembled in location 3000 then 5 30; is
assembled as 53030, “This tauldy is provided fer
compatebil.ny will, en early assem iler. onlays

5.3 Identified Addresses.

An identified Address consists of an identifier alone or

followed by a signed integer. An identified address is introduced, by a letter.

The assembler replaces the identified address by the sum of the address of
the unique location labelled by the identifier, plus the signed integer. ‘The

signed integer is called an increment even if it is negative. Thus, in

Example 1, the instructions 5 CAT+10 and 4 CAT-3 are both incremented

instructions with increments +10 and -3 respectively.

An identified address may be used in the text before

the identifier to which it refers has been declared, i.e. has appeared as a

label. :

Although an incremented identifier may be referred to

before it has been declared, such references greatly increase the amount of

workspace required by the SIR“assembler itself, Consequently, if there is

a block of global work space it should be declared early in the program and,

arrays of local workspace should be declared near the start of the block in

which they occur. This has been done in Example 2.

Example |

CAT 4 WS2

4 FLAG

7 ERROR

4 CAT

5 CAT+HO

4 CAT-3

If 4 WS2 is assembled in location 5600, then

4 CAT is assembled as 4 5600

5 CAT+10 is assembled as 5 5610

4CAT-3 is assembled as 4 5597

Pd
1~eAss onky .

13

f
e

Exarnple 2

[MXMULT]
8 MXMULT

MATRIX > .400 (COMMENT THIS IS A SKIP}

+0

MXMULT 4 WS1

4 MATRIX+7265

Tf 8 MXMULT is assembled in location 3072 then 4 MATRIX+265 is
assembled as 4 3338 (3338 = 3072414265). The use of skips is explained
in Chapter 7. .

5.4 ° Literal Addresses.

Literal addresses are introduced by +, -, =, &, or &.

They are used to make it easicr to write instructions which operate on

constants. Instead of putting in the address part of the instruction an

identifier which labels the constant at some other point in the program

e.g. TEN +16

the programmer may put the constant itself into the addres s part of the

instruction;

e.g. 4 +10

The assembler makes a special note of this. On

reading the end of program symbol % (see 9. 2) it allocates a store location

in which it places the constant and inserts the address of this location in all the

instructions which use it.

There are four types of literals, corresponding to
the four different possible types of constants.

(i) integers and fractions these have exactly the

(ii) octal groups same form as the
(iii) alphanumeric groups corresponding constante,

e.g. 4~.2667 6 &7777
"2 +360 4 £E IG

(iv) quasi-instructions (see below)

ty

e
e

5.4.1 Quasi-instructions.

Quasi-instruction literals differ in two respects

from pseudo- instruction constants.

(i) every quasi-instruction is introduced by an =

sign which immediately precedes the function

bits or the solidus indicating B-modification

if this is present.

(ii) the address part of a quagi-instruction must

be in absolute form - relative, identified or

literal addresses are given as errors (error

£0)

Examples 4 =8 0

4 = /00 i.e. zero accumulator except for 1 in sign bit.

6 =15, 8191 i.e. make sign bit zero.*

= One Space enackl ig rtcommendand bare,
~~

Note: Literal addresses may only be used with functions 0, 1, 2, 4, 6)

12, 13. If an attempt is made to use a literal address with any

other function the error message EL will be displayed.

This t Hf fence oft Oz) :

Thin is Loss petlrategicalty conten 6 B877I7% (Cea chag. 6.2)

15

Chapter 6: CONSTANTS ‘

“There are four types of constants allowed in SIR:

(1) Integers and Fractions
(2) Octal Groups
(3). Alphanumeric Groups
(4) Pseudo-Instructions.

All constants must be followed by a separator.

~

6.1. Integers and Fractions.

*
An integer or fraction is introduced by a + or - sign.

If the + or - sign is immediately followed by an integer, then the constant

is stored as a binary integer. ‘

e.g. +14 stored as 000 000 000 000 O01 110

-64 storedas 111 111 111 111 900 C00 .

Integers must be in the range -131,071 to +131, 071 inclusive. (- 131,072

may be written as the octal group &400000)

If the + or - sign is immediately followed by a decimal point (.) followed

by an integer, the constant is stored as a binary fraction,

e.g. +. 375 stored as 001 100 000 000 000 000

-.5 stored as 110 000 000 000 000 000

SK

(The 'fraction' -1 can be written in the same way as the integer - 131072)

Fractions may contain up to six digits.

6.2 Octal Groups.

Octal Groups are introduced by a '&' sign. An

18-bit word can be divided into 6 groups of 3 bits, each being

equivalent to a digit from 0 to 7, Thus a constant can be written as a
group of 6 octal digits, which immediately follow the '&! sign.

e.g. &312705 is equivalent to 011 001 010 111 000 101

Octal groups of less than 6 digits can occur, in which case they are right-

hand justified (i.e. &42 means the same as &000042).

co
ta

S
e
e

6.3. Alphanumeric Groups.

Alphanumeric groups are introduced by a £ sign, which

is followed by up to three alphanumeric characters. These are packed, from
left to right, into the store location in the 6-bit SIR internal code. All

characters included in the code table can be stored except that

(i) % cannot be included, (see 10. 2)

(43) the alphanumeric group is considered as complete

if a new line is encountered before. three characters
“have been read after the £ sign. ‘In this case the

group is left-hand justified (i.e. the remaining

characters are considered to have code 0, the

code for a space). The new line is NOT considered
as one of the characters of the group, but instead

acts as any ordinary separator.

GH Spaces, however, when occurring in the three

characters following a £ sign, are treated like

any other character.

Ce Tae ne al phemumeic geoups UF tenated
GS "Spee te

7

(v) Yo eneisle ae Orberno2 cade of “newlina” bo

te Slovak, (aasgves Gi) above) Ba Sy rdear’

Few al plamanntant. groves is Sted ag uals &O4,

(it) £ is sborak af Value ZO3, ae

punetiad on é, a, ov ‘\.

: The chief use of alphanumeric groups is for storing
characters which are to be punched out at some stage of the program. This

can only be done if the program also contains a print routine and a table for,

conversion from internal to external code.

oF tie character gubroukines ured by

orig ak. {Rie B. Batam erda V 12. / Gs ° ead Se frond gad Cae

prosting Ob ghia murnnee, ger.

E xampl es

Alpha- Actual ; Form placed in store

numberic octal

group equivalent in octal alphanumeric

as written
equivalent

EMAN 55 41 56 -55 41 56 MAN

00 35 xx 00 35 00 space = space & space=new line

(xx indicates an unspecified character)

6.4 Pseudo- Instructions.

These take the form of instructions but are used as

constants. They are identical in form to ordinary instructions.

e.g. /0 0 can be used to represent the integer ~ 131, 072

Similarly, constants can be obeyed as instructions.

The intentional use of constants in this manner is frequently described as

pathological programming and is to be deprecated. Failure to terminate

an instruction sequence with an unconditional jump as described in Chapter

3 is liable to result in this unwanted effect.

ts.

Chapter 7: SKIPS

A’skip >, indicates that a number of store locations are to be

left unaltered before the assembler continues filling the store with SIR words.

The number of locations which are to be left unchanged is indicated by an
optional + sign and an integer which immediately follows the > sign.

For example, if the following piece of SIR program occurred.

+133 ~

> 15

‘ 4 8180

5 COUNT

dee ene

and the word +133 was entered into location 5000 in the computer store, the

skip > 15 indicates that the next word, the instruction 4 8180, is to be assembled
not in location 5001 but in location 5016, the instruction 5 COUNT is then

assembled in location 5017 and-so on.

The chief use of skips is to reserve locations for work space

without assigning any values to them.

7.1 Labelled Skips,

Locations left unchanged by skips may be labelled in the

same way as locations occupied by words.

e.g. ' 8 ERROR
> 4

ALPHA > 10
MATRIX > 400
BETA > 10

In this case if 8 ERROR is assembled in location 4000,

ALPHA refers to location 4005, MATRIX to location 4015, BETA to location

4415,

Notes: 1. The last word of the 10- word vector labelled ALPHA is

addressed as ALPHA+9. Similarly for MATRIX and BETA.
2. Addresses outside the range indicated in note l may, of |

course be referred to by incremented instructions. Thus ALPHA#+1],

MATRIX+1 and BETA- 399 are alternative ways of referring to the

second location of the array MATRIX. However the increment
relative to ALPHA would have to be changed if the length of ALPHA

was changed and the increment relative to BETA would have to be

changed if the length of MATRIX was changed.

19

Chapter 9: -END OF TAPE AND END OF PROGRAM SYMBOLS

9.1 End.of tape symbol (halt code)

A halt code punched.on a tape causes the assembler to

wait. Assembly can then be continued by re-entering at CONTINUE (sce

chap. 12) when the next tape is under the reader,

Hait codes are chiefly used:

(i) at the end of each tape of a program punched in parts,

(ii) at the end of patches.

; Frequently, when a program is being developed, each

block on a tape is terminated by a halt code and several inches of blank tape,

9,2 End of program symbol (%)

On reading a % symbol at the beginning of a line the

assembler displays a list of undeclared local and sub- global identifiers,

locates all the literals in consecutive locations immediately following the

program in the order in which they occurred in the program, displays a

list of undeclared global identifiers followed by a ‘FIRST LAST! message,

indicating the store used by the program and waits. Further symbols on the
same line will be ignored but the line must be terminated with a new-line

symbol in the usual way. A % symbol should be put:

(i) at the end of the last tape of a program in load-and-go

(ii) at the end of each section of a program which is to be
assembled as a separate relocatable binary tape in

non-load- and- go,

It will frequently be found convenient to end all tapes with

a halt code and to read the % symbol from the on-line teleprinter or from a

special tape comprising the character sequence: @ , ® @) ;

21

,
Chapter 8: COMMENTS & TITLES

Comments are included inva making the print-up of the prog

A string of characters between (and)is a cominent, and is ignored by SIR, A
comment may be inserted anywhere in a SIR
Identifier List. Comments must not, howev

program for the sole purpose of ram easier to understand,

program except in a Global
er, split any SIR element.

e.g. the section of program:

‘ 9 ERROR2 (NUMBER OVERFLOW ERROR-
INTEGER> 131, 07 i) 4 INT

5 WS2

is assembledas if it were!
9 ERROR2
4 INT

5 Ws2

TE the Crest symbet teside a comment ip onmathee "(" calich og. tithe, ama wll be copied Ay

Rus providers a tecol, of trees ‘Roads

the comment u

SR ols a lahed List,

2.9. (CSqunee Root Sugeoutine)
wea tte.

Titles omc comments many ores conta charackes in te G- (seo 15), andy of lute be coke
"oy" . ‘a ond S" shod nok be UB.od

Grwengt hab (. Paey be uded Fo pucpen Ccrerdaed we tek prviews pores, at ei - Not ine posButes ‘tat « “round fractal count is wok Lagk,

A ble Shed be hott, precodoct amd Collawed if & () ond
Kowtk eemtein ne (y's ov : Loewreeate, letivary,

26

re
d

Chapter 10: SPECIAL FACILITIES

10.1 Patch and Restore.

A patch is a directive to the SIR assembler to stop
placing instructions in consecutive store locations and to place them
consecutively from the location indicated by the patch. At the end of a
sequence of patches compilation of the main program can be continued by
the directive restore.

it is the responsibility of the user of these facilities
fo ensure that no location, whose contents will be changed by the later
action of the SIR Assembler, is altered. (Such locations normally contain
in their address. parts information used by SIR, changing this information
may lead to the corruption of other parts of the program). Any location
containing an instruction which refers to a currently unplaced literal or ;
identifier falls into this class. ~

a
r

10.1.1 Patch.

A PATCH is written

tA

where Ais a constant or any currently locatedaddress. Its effect canbe formally
defined as

if CPAR = -1 then CPAR:=CPA

then or otherwise CP A:sA }

where .

CPA is the Current Placing Address, i.e. the
address in which SIR will place the next itern, and

CP AR is a location used to hold a copy of the CPA
when inside a Patch. (CPAR is initially set to -1 by the assembler),

In non-load-and-go mode a patch may be made to an unlocated label
if it is the first thing in the program, (apart from global lists and
comments} No other patches, or 'Restores' ($) are allowed in the
program. The label must be located when loading the RLB tape.

(10.1.2 Restore

The symbol $ written by itself on a new line

causes assembly to continue from the location which would have been used

but for the intervention of a Patch or Patches. Its effect can be formally

defined as

if CPAR # -1 then CPA:=CPAR . }

then or otherwise CPAR I= -f 34

.

: The reader. should work out for himself why

a Patch read in after the end of.a program, which uses literals must end

$
%

10.2 he Trager Pacatiby, ur. (PASS Sin.

Q-PASS SIR conbaine a “bigger Facility, dorlbed
vee gecliew FEO Th emalile progans covletuing bheane Io he
fetid ot FASS SIR poe to amenblig hy “S-Pass SiR, PASS
SIR, nee accepts Bae bregges tyra’ “oe,

“Bae adbipens als awwidhe tha Hepefearh "ee ‘

ocmus 6 te ad ‘ tad -
& we ee pyogmn (Mca fos, [-PASS Sia, Whew sever Elng

Fame Fanti carevgha tied, Ay Faashiing & Le Mare, ten Sbonadd Pragaen

may ts chyped, shaving ot the recoclead addiren, by cudnt PAPI 3 oy Ue

Pass SiR ak “execure” via, «= &IEF4 3,

mee Be cabitng ‘@ orlig cnrnlebis on Sond ond ~Eo

mode, le Rit. 6 meda “<" is iqnesed.

.

Ghapter. 11: OPTIONS FoR. 1-PASS sie.

“Options are used to. alter the way in which the assembler

operates; . They are introduced by an.asterisk (#) followed’ by an optional

+-Sign and an integer, The last:seven bits of the integer are examined and

variations are made in the-operation of the assembler: as: follows!-

Bit Meaning if bit” has-the value Availability

1 : 0 Load Non-

& Go. Load Check

« & Go

1 «. display labels don't display labels Ocor 1 G 1

2 load and-go non load and go an 0 0
oA. clear the store take mo-action:..- O-or 1 0 i]

16 OV qusgemibsle from & continue at NEXT O-or 1 0 0

32 set dictionary, -| set dictionary Oorl 0 0

~ below program below assembler
64 perform checks compile program 0 0 i

only !

. When assembly is started at START, an option of #. Bis

automatically assumed. This option, like all other options is cancelled

when the next option is read by the assembler. It should be noted that

the 1, 2 and 64 bits enforce conditions that hold continuously, whereas

the 4, 16 and 32 bits direct the assembler to do one operation at the time

that the option is encountered.

It is not possible to enforce all combinations of the options

indicated by the six bits. The 2 bit is examined first to decide whether

the assembly is operating in the load-and- go or non load-and- go modes,

and the other bits are then examined where appropriate.

The difference between load-and-go and non load-and- go
programs, .and the action of the binary loader, are explained more fully

in-chapter 12.

11.1 Load-and-Go mode

When the 2 bit in an option has value one, the assembler

operates in the load-and-go mode, i.e., it assembles the source program

_in the computer store ready for triggering.

Aull the other options
are available, and the bits are examined in the following order:

25

ee
e

16 bit (continue at:21)

Wf the 16 bit = 1, the assembly. will continue at

location: $.,

4 bit (Clear the Store)

Ifthe 4 bit = 1, the assembler clears all locations

from the one where ‘the next word is tobe assembled

to. just before the SIR.assembler itself.

32 bit (set dictionary below program)

The Dictionary is the area of store where the

assembler lists all the identifiers and literals it
finds. It is normally built up. just “below the SIR .

assembler itself, ‘but if the 32 bit-= 1, itis built. ~ F

downwards from the location: preceding the one

where the assembler is about-to. put the next word,
This option may be used when storing a program in the high end
of store.. It may not be used in the same option integer sas
bit 4.. When option bit 32 is set = 1 the test which guards against
program overwriting dictionary-or the Assembler itselfis removed:

(iv) 1 bit (Display Labels)

If the 1 bit = L ‘whenever the Assembler finds a
- label it punches Ab ow a Rewline, beget lar wrtly Ca
oka amc decwnal oshilnewyesg ooh tap Location bo
cotiehe wes Aalest ~ pelers, Locet Rebels ona
precede’ by A spaces Sulegtotal faiends cunth Glotols by ee. cya LN kA by 4,

“Reka ane pusched, aw the ladle Usb, te load andege
mods, ittespeciue of be Jeli. fm exbra nealing
‘ws penckned whew ow nao blac 4 frends

Note that, if error indications occur, they will

appear among the labels,

Non Load-and-Go mode.

When the 2 bit has value zero, programs are
assembled in the non load-and-go mode, i.e. they are not assembled in
the store but are punched out in a special binary loader code and can be
entered into the store by means of te, Si Br. B. looder

l- PASS Sit,
earithn,

Cla. Mea rnaniining opttong ana nol peleunsct |

a.

11.3 Check mode.

When bit 64 has the value 1 and bit 2 has the value 0
a program will be scanned for errors without actually being assembled.

The only option available in this mode is ‘display

labels'. The effect of requiring other options is undefined.

(i) 2 bit (Main mode indicator}

This bit must be zero

(ii) 1 bit (Display labels)

This bit has the same effect as in the load-and-go mode.

11.4 Uses of non load-and-go assembly

Although it is usually more convenient to assemble

programs in the load-and-go mode, non- lood, ~owch= 96 wold jae

“ged ua the Fohboeding Carts bene® i

(i) Dusong Ke dovelopmek of @ program Usts
o Aa rurdose of proven sulscublacd “ov

thste SuloweuBaed and wrublder cortrudd

he coved 6 12 tntecmeda ate) bap 24
‘ - t 2 ey

leas wa lanes al tie : Views Progen wae A ;

loosed ux belscede Cove, “Thas « ayes 7
Cuvee pecs €

RLB tapes are much smaller than SIR tapes and are
read in at six times the speed.
Ld op ete a
wee hak ow CORD bon, tee pe ye th A

iy § wlivonsk Lvs vg yorebinud otutdA he

covvetsd by pce bens by 2-FAS sg

(i fis Ke meant of uncer poro ting, Code ~
. . . fee

o peocasiantes caren us CIE typ How

G99 Algal ss Gh gy dosecdsccd ehseuluane,

OO

11.5 Summary and Examples of Options

Mode

Load-and-Go Translate to Check Effect

. paper tape ys

2 oO] 64 Basic mode

1 . ~ ; I Display Labels
4 - : - Clear store

16 - ; - Start placing program at €@

32 - - Set Dictionary below program

Add together the numbers in the appropriate column

and precede the sum by an asterisk. e.g.

*# 19 Load-and-Go, start placing program at

location @, display labels.

* 0 Translate to paper tape.

#65 Checking mode, display labels.

M2

Chapter 12: ASSEMBLY AND LOADING OF SIR TAPES wrrH !-fASS s12,

12.1 Assembly of SIR Tapes.

lay MHepaen ©, tbakete py be -_ stage : : ° “The assembler “PASS Sa 23h Blveny Medes Bis vead in by the initial instructions, in Mode 3
ALL tapes written in SIR-can then be read in by entering the assembler-at.one *

of the flowing starting addresses; als t.. Moda 3,

Address Name Effect

&IF440 START Cancel all existing dictionaries

me and begin assembly, ung

&j444] . cam indicakiens and lobeb
OC Far. Sists sae, wopectrioales ,

WOD~ Sevres “Tilecixcta,
420 ~“eleceda

& (4-2, CONTINUE Assemble, maintaining current

eure, dictionaries

12.1.1] Load-and-Go Mode.

: In this mode programs are assembled in the

store ready for immediate running. During assembly appropriate error

indications and, if required by the options, a label list are displayed.

When % is displayed the assembler locates

literals and displays a list of unlocated identifiers followed by

FIRST ‘LAST
al a2

where al is the lowest and a2 is the highest address to which words have

bean placad since an entry was last made at START. re

12.1.2 Non Load-and-Go Mode.

In this mode programs are output to paper

tape in relocatable binary'(RLB) form. If required by the options they are

preceded by aloader. The assembler forms and stores a checksum.

When % is read this checksum is output followed by fifteen

blanks and a loader halt code. Any necessary EU messages

for global identifiers are then displayed. (EU messages are

explained in Chapter 13). These are not necessarily errors,

as the labels may be supplied by another relocatable binary

tape. They must be distinguished from EU messages for

missing local identifiers in the last block, which are displayed

before the loader halt code. If-any errors are detected during assembly,

punching of the relocatable binary tape ceases and compilation continues

in the Checking mode.

12.1.3 Checking Mode.

In this mode error indications and, if

required by the options a label list are displayed. No other output occurs.

The only store space used is that occupied by the dictionaries.

. 29
foe Waleradicde "fren

, 12.2 Loading of Relocatable Binary Tapes.

; RLB tapes can be entered into the store at one of the following

starting addresses; im Medea 3B (Bub see pomernple 12.6)

Address Name Effect

START A Cancel the current existing dictionary

BAA4R4 (. and read a relocatable binary tape.

BAAESS S Start placing it at location unless it
OCtAL begins with a PATCH to a different

starting address, gicixy

error tadlicoBons and letoed,

Laks da, tapechiuedss ,

§oo- Senta “Educacle
qa Tehecerda.

BAPABG START B Read a relocatable ‘binary tape

maintaining the current dictionary.
. StaRT A,

GI443% | sTaRT C | As for 30, but CPA is not reset to 8,

, 6nce this has been done it is
‘not possible to assemble source tapes without reading in the assembler

again,

During loading, a list of global labels used and

their addresses is displayed. If any errors are detected an error

indication is displayed and the loader halts, but loading may be continued

by entering at START B to find further errors. The effect of an attempt
to run such a program is undefined. On reading a loader stop code

loading stops, the loader displays a list of global identifiers still to be

located preceding each identifier by 'FU'. It then displays a FIRST

LAST message as described in 12.1. 1 above with al referring to the

last entry at START A or START C, The checksum preceding a loader

stop code is checked against the checksum the loader has made whilst

loading.

Every RLB tape must havea loader stop code at

its end (i.e. the last source tape used in its production must end with

@% © ©).

Bo,

12.3 Mixing of RLB tapes and mnemonic tapes.

itis possible to read several mnemonic tapes into the

store using the assembler, and then.to read several RLB tapes in at

START B using the loader in the assembler, In this case all the tapes will

share the same dictionary and can communicate with each other via global

identifiers. This facility permits library subroutines to be stored as RLB

tapes and a SIR program to use them without itself having to be translated

to RLB form. Note that the last of the mnemonic tapes must end with

new line % new line, (0.

* 12.4 Loading programs into the high end of the store.

Programs read in load-and-go are entered into the

stcre immediately above tha last program read in, unless the 16 bit in

the options indicates that the program is to be stored in location 2 onwards.

Programs can, if necessary, be directed into a specified part of the store

either by means of a patch at the start of the program or by use of the

‘continue at ‘&! option followed by a skip, prtently thu luther by cawid

brewble eth any ‘qi syerbors.

12.5. Compatolsiiby eikéy earlier raves od [PASS S18,

RB. tepes vende wang “I-Pass SiR 2/6/66 — may be Lonctad
as ww secbow (2.2. ebowe 5 souks usurg bape pooling vaede 4,

(Re. G. taper mada by ta afeles each 24(3[H1 issues ef (PASS Sun,

made Lore goucce-topes nok corning obi plamunnarde groups, sme

idewtan? exact far Corr mode of “Unpot)

12.6 Multiple Program Assembly

r
d

if two or more programs are tobe used together, linked by
common global identifiers, and each program is terminated by %; the
following rules should be observed.

12.6.1 Load and Go Assembly

Assemble the first tape by entry at sagt. This tape may
have any load-and-go option. Assemble all subsequent tapes by entry at couraua,
These tapes may include any load-and-go option (except options including the
32 bit).

*

12.6.2 Assembly to paper tape (non-load-and-go)

(i) Assemble the first tape by entry at START.” ‘The first
significant item on this.tape must-be the option *. 9

No other options can occur on this tape.

(2) If the program is continued on further tapes, assemble

these by entry at COnTaUE, until the % is reached. There
must not be any options on these tapes.

(3) To assemble the succeeding linked programs steps (1}
and (2) must be repeated for each program.

(4) When loading the programs the first program may be
; loaded by entry at STARTA or STARTC.

(5) ‘The succeeding programs must be loaded by entry to
STARTB. ; 5

a

3A

PMOLeT PPASS S12 gti Stor
i

STO
iE thee Lueck haem ote
OR ee ene « kenge ‘A tae te UOT a aelles } *.

Chapter 13: ERROR INDICATIONS 5

Error indications given during assembly.

The following error indications are displayed (i.e. output

to the teleprinter) during the assembly of SIR tapes whenever the

appropriate error is detected:-

Error Meaning Effect in Load-and-Go Mode

EO: Instruction Error

(i) function > 15 One store location is left

(ii) address part of unfilled.
quasi-instruction not

absolute.

El: Contextual FE Y iB

Any impermissible sequence One store location is left

of characters not giving unfilled,

any other error indication

E2: Octal or Alphanumeric Error

(i) Too many characters in One store location is left
an octal or alphanumeric unfilled.

group.
(ii) character in octal

group other than digits

0-7.

E3: Label declared Twice

Label found identical to a One store location is left

previous label in block unfilled.

where previous label is

still valid. ,
;

E4: Global Identifier not
Beginning with Letter

Applies only to identifiers The program is corrupted

in a Global Identifier List. in an undefined manner.

ES: Store Full
Program is about to over-

write dictionary, or vice-

versa, (This may be the
result of a Patch error),
(ES after % has been read
means that there is

insufficient room to locate

all the literals used in the

program, }

The Compiler waits.

Compilation can be continued.

A patch,

obeyed instruction must be

read next. -

skip, option or

32.

\V

Identifier has appeared but
never as alabel. Given at

end of block for local

identifiers, or con reading

new line % new line for

global or sub- global
identifiers.

Error Meaning Effect in Load-and-Go Mode

E6: Number Overflow
; (i) integer outside range One storé location is left

~131, O71 to 4131, 071 unfilled

(ii)more than six digits
in fraction,

E77: Buffer Overflow

Over 120. characters in line One store location is left

of text (i, e. too many unfilled.
for read buffer},

E8: Illegal Character

(i) Misread or mispunched One store location is left
tape. unfilled.

(ii)character on tape having _
no internal esde value.

(iit) Paving Geroe

9: Stop Code not first

Character on Line

Characters other than, blanks The Compiler waits.

or erases between 'new Compilation can be continued.

line' and stop code. One store location is left

unfilled.

EG: Global Label Error

An attempt has been made to Compilation continues.

redefine a global label’as

sub- global.

EL: Literal Error

A literal has been used with an One store location is left

instruction other than 0, 1, 2, unfilled.

4, 6, 12 or 13,

EP: Patch Error

A patch, or obeyed instruction, | The Compiler waits.
refers to an unlocated address. Compilation can be continued

A patch skip, option or

obeyed instruction must be

read next,

Ev: Unlocated Identifier

Compilation continues

33

13.1 Layout of Error Indications and Their Effect on .
Assembly.

; Each error indication is preceded by io “erase” cdneceakars,

Three different types of layout are used for assembly error indications:-

(i) t EU: EU is displayed on a new line, followed by the
identifier. which has been detected as unlocated and

an ‘addxess*. If this ‘address* is 8191 the identifier
appears only in Global label lists, otherwise it is the

. address of the last reference to the identifier. The

assembler continues checking the identifiers in the

dictionary. ;

(ii) * ES, E9 and EP: E5, E9 or EP is displayed ona jB
new line followed by the bracket count (i.e. the °
number of '{'s found since the last START). Assembly

is halted but it may be restarted at CONTINUE,

(iii) En (all others): En is displayed on a new line
followed by the bracket count, and on the next line
is displayed the line of source text in which the
error was detected. The assembly continues with ;

the examination of the next line of text. !

In all cases, output of relocatable binary tape ceases
if assembly is to paper tape, but error indications (and labels if requested)
continue to be displayed.

13.2 Examples of Assembly Error Indications.

E2 16 8 occurs in an octal group in block
PRINT 6 &800000 16 p

EO 10 Missing separator giving rise to an

152048 impossible function in block 10,

~ Note: EU displayed after % has been read is not necessarily an

error indication. It may mean that a Global label, which belongs
to a program that has not yet been loaded, has been referred to,

* Note 2 S-PASS SiR prets a ne oF Senco fowk an Racing
ES c+ Ed, pare oe alt of Mon lean Pray be }

Lenetewet or rubbish. °

13,.3. Brror Indications given during loading of relocatable
binary tapes.

The following error indications may be given during the

loading relocatable binary tapes:-

Error Indication Meaning

FA}: -Mis-read or two different kinds of illegal

FD); mispunched tape codes on RLB tape

FC: Label used twice as for £3

FE: Store overflow as for 5

FR: Checksum failure punched checksum does not equal

checksum added by loader.

FP; Unallocated address error | as for EP

FU: Unallocated label as for EU

Note that:

(i) FC is displayed when a tape with a label in it is entered

at START B when the same label has already occurred

in a previous tape of the same program (the presence of

two identical labels on one tape would have already been

detected as an error during assembly).

(ii) FU indications will be displayed when a global identifier

occurs in one tape and refers to a label on another tape

which has not yet been entered. FU indications only

indicate errors, therefore, if they are given after all

the tapes of a program have been read in.
. 1& Sub # pbat

(iii) Since all locallidentifiers are eliminated during assembly

of the RLB tape FC and FU refer to global identifiers.

No additional information is displayed for F errors except

that for FU errors the identifier which is unlocated is displayed on the same
line as the FU* All F errors halt the loader, but loading may be recontinued

at START B.

KomA om oddiciS UW Gruen Corveesgonting bo ieee

addess Uns EU errs,

35

Chapter 14: EXAMPLE OF A SIR PROGRAM

The following short program adds up the absolute values of

the ten integers in the block headed "DATA' and stores the answer in

location ANSWER. If, -however, the ‘sum becomes.too large to hold in one

store location the letters OF are punched out on a new line and /15 8191%

is put in location ANSWER. The program tape is read in first at START

and it will stop on the stop code. The data block following the stop code,

which can be on a separate tape if desired, is then read in at CONTINUE.

The program can then be triggered at location BEGIN, the absolute address

identified by being read off the label list which is produced as shown below:-

Oe geGin 2
Lon ~~ LOOP 12 mo

Or es

END ; 32
COUNT 34
SUM . 35
© Answer 3G

an DATA 24

FIRST LAST
8 2

The block. DATA occupies locations 37 to 4 and the
literals occupy locations -47 to 52: the first literal being placed in the
lowest address.

x mb would be ler pattotegiant ,

Se
al

vans

36

ad

mes

(SIR PROGRAM EXAMPLE)

(BEGIN DATA ANSWER]

BEGIN 4
5
4
5

‘LOOP 0
/4
9
8
2
1
5
9
10
4
9
4
8

OF
15

4
15

4
15
4

END 5
8

COUNT |
SUM >t
ANSWER >i
(HALT CODE)

[DATA]
DATA +65

412
-14
~ 756
+602
5
+56

+1
+0
~22

Sy

-10 (ENTRY ADDRESS)
COUNT
+0
SUM

COUNT

DATA+LO

542

342
+0

SUM
SUM
OF

COUNT
“COUNT
LOOP

sUM
END

&o22 (PUNCH NEW LINE)
6144
£139 (PUNCH 0)
6144
EAE , (PUNCH F)
6144
=/15 8191

- ANSWER

3H)

37

14.1 Notes

(i) option *. 23 means.load and go, list labels, clear the
' store and start assembly at 9

(ii) relative addresses have been used for short jumps and
identified addresses for longer jumps.

(iii) the identifiers here perform several different roles -

LOOP, END and OF denote locations to be jumped to.

COUNT and SUM denote workspace

ANSWER denotes a location holding the result

BEGIN identifies the trigger address on the label list.

(iv) the octal values, with parity* of the characters to
be punched have been used; in.a long program this
would be done using alphanumeric groups together

with a code table and print routine. ‘

(v) the program occupies locations & to 44 and the six
literals used (-10, +0, 022 &@12%, &126 and =/15 8191

occupy locations 44 to 52, The location given under

LAST in the print-up is therefore 52. —

(vi) the halt code at the end of the first block is on the
line following the comment (HALT CODE).

(vii) % is preceded and followed by 'new line’.

(viii) BEGIN and ANSWER have been declared as Global
labels so that other programs can refer to them.

DATA is not wanted outside the program and has

consequently been declared as Sub-Global.

14.2 Layout.

As separators can be inserted at will between the

elements of a SIR program, considerable variety of layout is possible.

It is recommended, however, that the layout used in the example be adopted.

Note that extra 'new lines' may be used to break the print up into convenient

portions.

Bin 920 “Telecoda

38

Ye
ti

CHAPTER 1S: Summeey of [PASS SIR EWTey Foner

Olah: Ebay» Poke Acklon Role neces,

Bit4a4 STARTA 460
Bel4t4ss STAETA Fae “te Aisadk 2.4,

GIPess STARTA RL.8

CAaccece STARTS open
&igteo start Gao.) (Te teach
Ge ¥4l sraet daa} Saas tat
RAF 42. CONTINUE tapes

MNP 43 i EXECUTE chovesd prog lo

CHaere® 16: SToRE uUsee @yY i-PASS si

ee
L

“ (-PASS SiR, 24fa/s, Binany Moda 3
S620—~ 164. Okan essen tlcud a proyinn the Jie Bonin
ecu weer tee shere belmwu SG 20, g ereruag bowers © 3

untess egbow bi 22 wi used,

GOES pts Losakicrne

“haa. ports oe {PASS See foning ae ROLLE,

Oceigy Lae Link o00~-E 1b.

Locke

tim otsemnlaleing Oe Progen

eves nekeg few. RL-8, tepes Be, Ainkionous ocuplts thas, Shore
Arotares Fac.

Locabern§ Ci6T- G44 ase NOT Used by \-fass Sie,
Bas per corks otter Aga be. ps fae "ARO. Gero -Sacen
(Smt Barany Tage Foveak — ftfey? (deserted Baraderds be
Are paca ests Lgaotiong Om ShSot3

ro)

a

This veesten of SIR thas
follLaniney PEASE toe

enn worittesn Cee bea,

a Yo enalyle The Sik.

which Octupiaes Virbuatly on entire S142 ~erped store. Programs assembled, by 4-PASS SIR ane Aimibed bp abeuk. 4080 bb Soon
-~Z—- se moda, cena,

Prvgcowy bo he caribbean

wrords in Qed we
obewk 4000 weele iv RLE moca, Pregeamt — ascembled, by 2-PASS SIR

dh loeakons Cons a to
tes

Peay iz
 cep

BILGE 9 en oR alias,

Giy To emelble Sie progmims ey ke worittern Sonn
ww [63S & ecoed, store.

Gd ‘To procbiace. a salf. tavibouned, binary bape. oh
toreplited — prognawes Capakle — of reloading ot tthe,
Specd ee thee Madeo,

POS me. nob cenkeaal
Arey Ste

“4 options ar obemnasl insbuchiene punched for Pass gig is accopbak by 2-FASS Se,
musk stast ante,

BUT EVERY “TAPE
» oe “newts , (See eorgmel 1.4). Sab. glebak ab wife

SERA ALO LS Ore nat ddstrin gets teed Fran globah idemii-bteeg .

Pobches com take thre follouina forms im

@) KN throne Nols on nkeger in the enoe,
Len ¢ 16383,
bo ON,

(4) fu N oc fa N whee Nts an inteqes ba
thre range OC N € B14]. “This
shove. pointer b> § giag >AN,

Ce} # LAGEL or F#LAGEL tN where is an tntegee
ad anh LAGEL iso a Priously locabed holaek

eter a docal ta bel of bee Carnet blocty
o om global label “canererthey osteclccby!

“Ris sets the store pointer

Sets beg

>

2

40,

ea, “Te bag er Fock iity *

a-P ASS SA combats &% troger Foeclety . af the 2 "
Symbet «og Soeur, we OS Sik Prep rrwd C Pecan,
coud Sollnweck bay ak leack sone newluns, Space, or bw bs)
baa As trata bape. made of Wie prope toad h
tragac 5 Cabs waatica hia ; ehrtin ate bape & datdingd Ly
eb the curthenk Yyolre of Kae Styne Potnber at
Crcmtes acts Plachong Aiddiess 5 provided Bak but, “es
in He ene 2 te 166 ce ecg lee, 5 and provided that

thee binany bape furme check saccade «

Foe Craarngle, was. bednanaey bape of tee Progen
START << 4- +0

iS 6144
8B yO

wit aaubomotnect! Stark ok STReT bron Loaded.
The same effock” com be ackic ww tehvorpeck Ao
mannt of 4 patelh, » Ane enamels

4 START

< $
& patel, of ble ype eall te needed Foo program is
Arcinns, assembled obo mor Wan one bape “hy means | of.

option St 92 (see pomgse® FES) eS the fest Wushuchlens
to be wbsersaol is NOT contmed ty the bask bina bape 3
Sunce bh brigaae “ pusckasl, debe ke bul ef tee bp,

being povched wslacen he ‘ < * syrainod is paad.)

Note. teak he Lastrneiion s

F2 << & 343
S 844
6 jt Oo

Q Staet

mey be used by sek ve aw RUTOSTART Qld aa

2 < 4 342
5 Bed
& StAet

wall © eb ve on aubosbrot Aw trigger the proammn wher Loaded
Tes Spotl. cowes a $ Se amok pair. — sloutol fo ltorar) aw
tro ~Le vel programy, benede cea stoenctlent ALE foe j
oy Me SRS GU Bo nemisters of ee prosenm being euibenad
ak SYRE Ts bub bas eB ne CES SE OR.

i 41.

14.3, Options,

Thy S-PASS SIR Ba separaks, bouts

following Mbtendora s :

ue Che option Avaue thre

list labels - decimal addresses
list labels - octal addresses

punch zeros for skips
set store pointer to 8192

° set store pointer to 8
tie off present lotnany tape with a sumcheck; punch
360 blanks and then punch loader and store pointer
for new binary tape.

N
O

©
wm

N
e

Ww

pe
t

Te addibiew, a cleoreston, may Ase purcked, ab Ure shark

eh the binens, bape by adding the sie of thre shore

to te phic; we. i. gt42 te had bo ee. englcion
a clear share enll be puvckead for lecakov, 4 to suis,

Ul NG3S4 or amy Aarger multiple «f i192 is added to the
ogden, ba clear shes unl he punched, Ha Rest

to clear locebions BIT2 upermedls, ond kee cecard bo
cse & bo SIYS, Claas His faetlity can only be
ured iw ephieng whicl precede, ae Aesth cao of

Re preg «

Option bit 4, ond the clear- store buts, should NOT toe
peapined — shorn assembling a correctly wsrithen SIR progam.

Op tem nt 32 enabled a donsy progam to be assemlaled
as Seveml A, inany bu 2S.

Alixrougle nts 4 BR, ond tre clomr~ chore bits Laue no
ranma oy, the fiesk past, and Sits 4 oond Do hace no

mreamng on be second pass, Be SAME epbows
musk be used on bot® posses (ot@ercuce thee
sume cheek atl Laat) .

{4.4 Liberals.

The locating of literals is similar to I-Pass SIR - i.e. though
itis often not necessary to consider where they are to be located, they can be
placed in any block of consecutive locations at will by means of patches,
Literals for the two stores are considered independently. Those for the lower
store will be located immediately following the last location used by the lower
store, and those for the upper store will be located immediately following the
last location used by the upper store.

Programs are allowed to jump from store to store indefinitely.
For example, the following program would be acceptable:-

_ 23 locations

LABEL 4 (+123 me:

5 A 9
& 2306 10

_ £163 ~
ns ed | 163
AL 164

“ $p345 .
G& +i }12345

__ #* 100
nn ast s 8292

. tLABEL+4 ;

4 bt | 15

RIB
3 | 8192
4 +1 | 8193
& -I 8194

8 sto 7.8195
%

The literals used in the lower store and upper store are treated
independently. In the example, the literals for the lower store are +123
&306, -l and the literals for the upper store are +1, -1.

The lower store literals will be located in locations 16, 17, 18
(because 15 is the last location used in the lower store) and the upper store
literals will be located in locations 8196, 8197 (because $195 is the last location
used in the upper store), Please note that the upper store literals are not located

in the order they are written.

; : 43.

14.5, Rasembly & Londlng , & the label List.

2 The bepe “Q-pass sik, 9/1/44, Binoy Mode 3” is peel us
tay tte lastucklons lw Mode 2, ee SIR Tekeerelus,

laper, ten WOO-Seris Telecode or U0 “Telesovle, utube esc un Medes 3,

The Kesh kage. ig tvtkenacl af @ ox ta, and alt
the offer ak |,

Duriag thee Reh pass Uae assembler checks for errors
emd sboses the dichonaa. “Titles, Grr wdicablons
(4% any & odseesses of Asloels (ik option bits daw &
Oe presewt) ant erbpet on tha puncte uw qo
Telecods tb Che Fist fepe ams enteoah ot % ond
wr NOD~Senias “Telecoda fF the Leck bepe wad enberel
ol Io. hecak labele Cmte pre cached bey 2 Spaces,

Raodling enh evdag stag i oo helk coche ts heel ot

ub oO ‘shove ~ fe? ww “pe. gl? erret (e 6) ie encounkered,

Whew a ‘af? AS eed, oo MESSORE & the form

First NEXT 4 NEXT2 BCT
8 5434, 42345 30%

oth be punchaad., where. FIRST is the ocsesk loankion

used by Kaa program, = NEXT4 ond NEXT2 ane the
next ausailable. locations, after Ke ler ds in the Lower
and, upper store modules (not Recemanty tae highest
Aocwkions used ry the progmn + Hus FingyT ins the
Some names AS im Le PASS «Si S/6/66, -buk = NEXT roan
net be thie teem as LAST of FASS SiR, plas one, althousl.
‘ik offen ts) DICT dadieaie the percents of .
averlable eiekienard wrorkspace, used to assemkle the program

“Pe second poss is made by é hecaag re Aiests tape. at

10 and oth Offers ak iL Th ewan cure frond om

Van Keck part Kae assembler Stops, when enteral at IG

orth the number of erect ww he accumutator, —E ring 13

racy be uted bo otgermble la 5 ele of teste crrecs,

Dury thre Second. pas, haw lounany bape or apes Crab

vo daca rhe number oot bepes hel wy me. ghee Koon e > ‘ a)

Bae rumba cod options combadintng ik Bz. 44

6. Dure be dicklevue go. & esserntheng TLeg,
neg

The Globed Highiontn, of a progres, the asgocicttod kat

ictonors pounkevg, Gwe ow teey th the assemntler sad
doe. cds weed as te wee mee |

i) i.
ines, ony tarbering ak \ &. Unas bupe is usehl bye sulsg aspect Leiag,

Su Pee. Se OW Aarge, Fe bas Oe Anas

bape by 2~Pass SiR,
Weisheles, Lp

bean compiled — eaby cbinons
Proce tn Me Stone amd a, found uo VE TE rene ‘ store tae Le PSe Sik

Lowy

te no wom bw
aSserbler dy AMEE |

ey 3 Se Beet bey usteg be duomeed Aickonany
S

we Hh eke

The fig man consist of Cry mbec of blo che 83
patches and beshrucklens te ub mez refer by
global dotoals A peo ted us tee Wey preg TBA af

oa ‘ he op okey Oe lswets hope cpg ne oesk alos ad, thom bag

Vist Ub mary nefer to ANY global of Ee mole
pram, éouk potcles after rn ghoet Soak

of the Fig wre ely ke fer Ge globals if
tn teas precadadeg global Lich, ae
nacarany ko sheet @

‘tes? us givin.

Corsa oppene

APP TH be

BA nth, Gan teat arose 3 a

To compile a fxg, place hue, ame of the hi hla,
and assembler ato ee shore Cprefembtas ef another
machine) hy recent 8 inthad casbuckions, “The Lirsk
pass ef Che fin is entered ab I (cr olich care
the Ubecsl enh don. Located af Usual: ie. adteg a . >

Lonok cutliung o& the she, powsten & tees trig) or
ok 1S (hr eli case te Likely quill be locatad
ofker Qe Vikeeelr of the wate Progr (or prt,
Arigg assembled), Exter tha fra OAen at 10
im eedie bea obsheutan oe loans bape *

Lebel tue
te the “same “Talooocke dr

pun chad whilst asseubling Rigs ealh we
those of Ce veel bape.

45,

Ee. S URL YE & Ever Tudicabons.

Basicolly Kae imdicabionr ‘ase Kae sama

used ta the

we
Serge

aN
OSA. Ee

(a)

Lad k= ge

rarockers A

ttre,

is given th te symbot “eo”

as urhen . | PASS SIR tg

ere. y they ene prenaalad, by ve)

and “tly” is ponchad. aS “space”,

indaandial meanenet % es Slighiiy hE eel, Lee

use ofan SPE SI92,

Pt Batre cue of ha FolLnerinng ‘

Unlocated identifier ina labelled patch (e. g. j PASS + 2),
This will always occur if, for example, a tape consisting
of such things is entered at 8 (which always effectively
destroys the present dictionary) instead of 9, Meor 18.

Dichomeny Stowe. All,

The store pointer falls outside one of the following ranges:

1Z SP € 8166
8192 £ SP 16383

A skip has caused a transition from one store to the

other, The only means of doing this is by using a patch

or option,

(ii) EB wth be duo toy parity errors, é

Cw) EU will be Biren — oaltew Fo is nead, Ub the sare qlobbat

ideukibves Oppeces LA owe lett fisk rere baw CE

(vw) D-rass sig ail Stor:
(a) 3s any tape dees nok start colt a “newling”
(b) Ak the Sart cf bee secernd. pass, Uo ered were found

en Kae feck pass (see pans raph, \t. 5)

-() oddeess of @& labal

Fest
(ere ba blag Cotte gaa bay loading tapes te terong ef: len)

During re sactnd pass, if bee

volenen ow the cigaanag g willy its ia) cal S

Whe So is mad on tie second poss Cie. bebo
the i t aes, Is Aiawe been ig thts chad) of Ro Sure ake odd

charackers peed Hien Rest Bo gacencl passes disaancn.

14.8. Suemaru of Enbey Polnts.

8. PRoack Sesh bsge, Lee Resb pass, Giving

label lisks or erroe Seb * * ‘ waclicabons ta FRO

a. Reod Sorbher bepes Lor Reesk Gass.

io. Rasd ferek bap & for seem, pass.
it. Road furtae bages for og acer, pass,

+
2. Read fest lege for Mest pass, givers

Lobel Licks or error wdicabions ia W-Series “Tel Teleoucde ,
\3, Some af 16, ber ignore eners fund ow Leck pars.
{4 Gama af @ oc ft a, Gut tekainn die blower, Ae

\S. Sema at € or {2 Nonake bebo daecht Ona s & locate
wt

Uterts after Ubecals of mate tape.
{6. Bure Assewblec + D ieronanns :

4, Bina, kp ex punched by D-PASS SIA,

“The, bonany beper penchest hy “2-PASS SIR, afi fs,
As

g troy Merde 2 Oat, ue * A.C. b. WGO~ Sewer \€-Bd

RB bnavny Tape Focrnat > 3 /4 te” ap daredhedt CUsecoahane ,

Thay De ped, ake $i bio. 4, 4 ieibial tard ac. ka ong

lusting bese tandsc Mode 23. Phagy eee, sume ehecksd 5

wh the check fails cankinunus cubpuk tg given on é
he eer otk 4 Woo ub succes & Orde ee Progra iS

bet ager aa, (wf thas Saat by chet heen uyged 7 Sen

Pacaace aa 1%. 2 5 or & dagnaervic shop is hemcdesl

. a wa
h

“4

o
m

. &
og bors BBs Oe vc tre bnges ean!

i 4

ly Ay we Cate sagt CAPE Conch

oo Seen Bhar dts. ore te

ruse used cores See “t VHPASS ne
Z- PASS SIR,

Swce thse, Yepes rk,, shot, POE Bahk ressc An nel : . Soon co ee

& ove aad Lock whos sug eid ak “4
~§ te,

ate weed ow meget kes e. ord ideudhies ew e

ae PRAGA § Veer st

Usehé wouti oo See eplions Ly, q- fats SIR

jl
#23 Decimal cbt. bed) Clee Slore aisevable from &O hobels One of Base optens sliouwld

‘ #22 " ited gk L¢ oles No ‘ ok he otek og. assernbte,

#3 Decimal & Ccin® - .
Waine epbion§ may Le uted DURING

*2 No “ BSS Er taley bo shack oy chop dalyoit
cog ag

cof 2 .

UseFul oghows tne 4. pas Sig

*16 No beabeds) ’ t , Assent Le & ate Shags bay shies) AS evnttate Sere 6, Deimel ZB Octeuf « j One of tear og
sha £

#20 ; .
Pras ing No

if al ee i setae Ley Spce ad
#23 Beceracd & trctel .

%

